M8
$$
\newcommand{\b}[1]{\mathbf #1}
\newcommand{\eye}{\mathbf I}
\newcommand{\sig}{\sigma}
\newcommand{\S}{\b{S}}
\newcommand{\s}{\b{s}}
\newcommand{\Kv}{K_\mathrm{v}}
\newcommand{\normal}{\b{n}}
\newcommand{\medel}{\rm{mean}}
\newcommand{\gives}{\Rightarrow \qquad}
\newcommand{\qgives}{\qquad \gives}
\newcommand{\qgivess}{\, \Rightarrow \,}
\newcommand{\rot}{\varphi}
\newcommand{\sige}{\sigma_{\rm e}}
\newcommand{\eps}{\epsilon}
\newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}}
\newcommand{\equivalent}{\quad \Leftrightarrow \quad}
\newcommand{\kilo}{\ \mathrm{k}}
\newcommand{\Newton}{\ \mathrm{N}}
\newcommand{\mm}{\ \mathrm{mm}}
\newcommand{\meter}{\ \mathrm{m}}
\newcommand{\Nm}{\ \mathrm{Nm}}
\newcommand{\kNm}{\ \mathrm{kNm}}
\newcommand{\kN}{\ \mathrm{kN}}
\newcommand{\Pa}{\ \mathrm{Pa}}
\newcommand{\kPa}{\ \mathrm{kPa}}
\newcommand{\MPa}{\ \mathrm{MPa}}
\newcommand{\GPa}{\ \mathrm{GPa}}
\newcommand{\mean}[1]{\bar #1}
\newcommand{\eqright}{\longrightarrow: \qquad}
\newcommand{\eqleft}{\longleftarrow: \qquad}
\newcommand{\equp}{\uparrow: \qquad}
\newcommand{\eqdown}{\downarrow: \qquad}
\newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad}
\newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad}
\newcommand{\Dx}{\Delta x}
\newcommand{\Dy}{\Delta y}
\newcommand{\Dz}{\Delta z}
\newcommand{\dx}{\mathrm{d} x}
\newcommand{\dy}{\mathrm{d} y}
\newcommand{\dz}{\mathrm{d} z}
\newcommand{\term}{\mathrm{th}}
\newcommand{\Mv}{T}
\newcommand{\Kx}{K_{\mathrm{x}}}
\newcommand{\shear}{\gamma}
\renewcommand{\*}{\cdot}
\renewcommand{\cd}{\cdot}
\newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}}
\renewcommand{\bis}{{\prime \prime}}
\renewcommand{\tris}{{\prime \prime \prime}}
\newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}}
\newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}}
\newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}}
\newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}}
\newcommand{\DGK}{D_{\rm{GI}}}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\braces}[1]{\left\{#1\right\}}
\newcommand{\brackets}[1]{\left[#1\right]}
\newcommand{\yield}{\rm{s}}
\newcommand{\abs}[1]{\lvert #1\rvert}
\newcommand{\dr}{\rm{d} r}
\newcommand{\Dr}{\Delta r}
\newcommand{\Drot}{\Delta \rot}
\newcommand{\Kr}{K_{\rm{r}}}
\newcommand{\q}{q}
\newcommand{\ubrace}[2]{\underbrace{#1}_{#2}}
\newcommand{\reac}[1]{R_{\rm #1}}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\cog}[1]{#1_{\rm{yc}}}
\newcommand{\cogi}[1]{#1_{\rm{yc i}}}
\newcommand{\tot}{\rm{tot}}
\newcommand{\parts}{\rm{parts}}
\newcommand{\nparts}{\# \parts}
\newcommand{\flange}{\text{fläns}}
\newcommand{\web}{\text{liv}}
\newcommand{\crit}{\rm{cr}}
\newcommand{\qv}{q_{\mathrm{t}}}
\newcommand{\dL}{\ \mathrm{d}L}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\dV}{\ \mathrm{d}V}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\dxi}{\ \rm{d} \xi}
\newcommand{\x}{\b{x}}
\newcommand{\K}{\b{K}}
\newcommand{\Ke}{\K^e}
\newcommand{\f}{\b{f}}
\newcommand{\fe}{\f^e}
\newcommand{\fb}{\f_{\mathrm{b}}}
\newcommand{\fl}{\f_{\mathrm{l}}}
\newcommand{\fc}{\f_{\mathrm{c}}}
\newcommand{\fbh}{\fb^{\mathrm{h}}}
\newcommand{\fbg}{\fb^{\mathrm{g}}}
\newcommand{\fbc}{\fb^{\mathrm{c}}}
\newcommand{\fbeh}{\fb^{\mathrm{h}e}}
\newcommand{\fbeg}{\fb^{\mathrm{g}e}}
\newcommand{\fbec}{\fb^{\mathrm{c}e}}
\newcommand{\Kebar}{\bar{\K}^e}
\newcommand{\N}{\b{N}}
\newcommand{\B}{\b{B}}
\newcommand{\Ne}{\b{N}^e}
\newcommand{\Be}{\b{B}^e}
\newcommand{\NeT}{ \b{N}^{e\mathrm{T}} }
\newcommand{\BeT}{ \b{B}^{e\mathrm{T}} }
\newcommand{\J}{\b{J}}
\newcommand{\bxi}{\b{\xi}}
\newcommand{\hp}{\hphantom{-}}
\newcommand{\trans}[1]{#1^\mathrm{T}}
\newcommand{\DEA}{D_{\mathrm{EA}}}
\newcommand{\DEI}{D_{\mathrm{EI}}}
\newcommand{\DGK}{D_{\mathrm{GK}}}
\newcommand{\DT}{\b{D}_{\mathrm{T}}}
\newcommand{\on}[1]{\quad \mathrm{on} \quad #1}
\renewcommand{\div}{\mathrm{div}}
\newcommand{\intL}[1]{ \int_{\L} #1 \dL }
\newcommand{\intA}[1]{ \int_{S} #1 \dA }
\newcommand{\intV}[1]{ \int_{V} #1 \dV }
\newcommand{\Ndofs}{n}
\newcommand{\nel}{n_{\mathrm{el}}}
\newcommand{\nbnd}{n_{\mathrm{bnd}}}
\newcommand{\avec}{\b{a}}
\renewcommand{\a}{\b{a}}
\newcommand{\bnabla}{\boldsymbol{\nabla}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\T}{^{\mathrm{T}}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\F}{\mathbf{F}}
\renewcommand{\r}{\mathbf{r}}
\newcommand{\M}{\mathbf{M}}
\newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}}
\newcommand{\origin}{\mathcal{O}}
\newcommand{\V}[1]{V_{\mathrm{#1}}}
\newcommand{\H}[1]{H_{\mathrm{#1}}}
\renewcommand{\deg}{^\circ}
\newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}}
\nonumber$$
Beskrivning
En konstruktion bestående av en balk är upphängd med en lina och belastas enligt figuren. Bestäm yttröghetsmomentet för balken så att säkerheten mot knäckning är 3.5 (i termer av last).
Givet:
Elasticitetsmodulen \(E = 210\GPa\)
Facit
Yttröghetsmomentet: \(I = 4.22 \cdot 10^{-7} \meter^4\)
Lösning
Lösningsgång
Från det givna lastfallet kommer linan bli dragen och balken tryckt, det finns därför en risk att balken knäcker. Den normalkraft då balken knäcker betecknar vi \(N_\text{kr}\) . Vi vill nu bestämma \(I\) så att denna kritiska kraft \(N_\text{kr}\) är 3.5 gånger större än den aktuella normalkraften i balken \(N\) , d.v.s. \(N_\text{kr} = 3.5 N\) (säkerhet mot knäckning är 3.5).
Kritisk last för balken
Balken kommer knäcka som en Euler tvåa, eftersom den är ledad i bägge ändar \(\Rightarrow\) kritisk normalkraft:
\[N_\text{kr} = N_\text{kr}^{\rm E2} = \frac{\pi^2 EI}{L^2}\]
Aktuell normalkraft i balken
Vi snittar runt knuten vid B och ställer upp jämvikt
\[
\eqdown -N_{\rm{lina}} \, \sin(\varphi) + P = 0 \gives
N_{\rm{lina}} = \frac{P}{\sin(\varphi)}
\]
\[
\eqleft N + N_{\rm{lina}} \, \cos(\varphi) = 0 \gives
\]
\[
N = -N_{\rm{lina}} \, \cos(\varphi) = -\frac{P \cos(\varphi)}{\sin(\varphi)} =
-\frac{P}{\tan{\varphi}}
\]
vilket med \(\tan(\varphi) = \dfrac{1.25 \meter}{2.5 \meter} = \dfrac{1}{2}\) ger
\[N = -2P\]
Notera
Minustecknet framför normalkraften ovan kommer nu tas bort eftersom instabilitet alltid är associerad med tryckande krafter. Det är därför vanligt att skippa tecknet.
Bestämning av I
Vårt villkor säger nu \(N_\text{kr} = 3.5 N\) vilket ger
\[
\frac{\pi^2 EI}{L^2} = 3.5 \cdot 2P \gives
\]
\[
I = \frac{7PL^2}{\pi^2 E} =
\frac{7 \cdot 20 \cdot 10^3 \cdot 2.5^2}{\pi^2 \cdot 210\cdot 10^9}
\approx 4.22 \cdot 10^{-7} \meter^4
\]
Diskussion
För att sammanfatta: om man har ett yttröghetsmoment som beräknat enligt ovan, kan man alltså öka lasten från \(20\kN\) till \(3.5\cdot 20 \kN = 70\kN\) innan balken knäcker.