E5
$$
\newcommand{\b}[1]{\mathbf #1}
\newcommand{\eye}{\mathbf I}
\newcommand{\sig}{\sigma}
\newcommand{\S}{\b{S}}
\newcommand{\s}{\b{s}}
\newcommand{\Kv}{K_\mathrm{v}}
\newcommand{\normal}{\b{n}}
\newcommand{\medel}{\rm{mean}}
\newcommand{\gives}{\Rightarrow \qquad}
\newcommand{\qgives}{\qquad \gives}
\newcommand{\qgivess}{\, \Rightarrow \,}
\newcommand{\rot}{\varphi}
\newcommand{\sige}{\sigma_{\rm e}}
\newcommand{\eps}{\epsilon}
\newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}}
\newcommand{\equivalent}{\quad \Leftrightarrow \quad}
\newcommand{\kilo}{\ \mathrm{k}}
\newcommand{\Newton}{\ \mathrm{N}}
\newcommand{\mm}{\ \mathrm{mm}}
\newcommand{\meter}{\ \mathrm{m}}
\newcommand{\Nm}{\ \mathrm{Nm}}
\newcommand{\kNm}{\ \mathrm{kNm}}
\newcommand{\kN}{\ \mathrm{kN}}
\newcommand{\Pa}{\ \mathrm{Pa}}
\newcommand{\kPa}{\ \mathrm{kPa}}
\newcommand{\MPa}{\ \mathrm{MPa}}
\newcommand{\GPa}{\ \mathrm{GPa}}
\newcommand{\mean}[1]{\bar #1}
\newcommand{\eqright}{\longrightarrow: \qquad}
\newcommand{\eqleft}{\longleftarrow: \qquad}
\newcommand{\equp}{\uparrow: \qquad}
\newcommand{\eqdown}{\downarrow: \qquad}
\newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad}
\newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad}
\newcommand{\Dx}{\Delta x}
\newcommand{\Dy}{\Delta y}
\newcommand{\Dz}{\Delta z}
\newcommand{\dx}{\mathrm{d} x}
\newcommand{\dy}{\mathrm{d} y}
\newcommand{\dz}{\mathrm{d} z}
\newcommand{\term}{\mathrm{th}}
\newcommand{\Mv}{T}
\newcommand{\Kx}{K_{\mathrm{x}}}
\newcommand{\shear}{\gamma}
\renewcommand{\*}{\cdot}
\renewcommand{\cd}{\cdot}
\newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}}
\renewcommand{\bis}{{\prime \prime}}
\renewcommand{\tris}{{\prime \prime \prime}}
\newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}}
\newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}}
\newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}}
\newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}}
\newcommand{\DGK}{D_{\rm{GI}}}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\braces}[1]{\left\{#1\right\}}
\newcommand{\brackets}[1]{\left[#1\right]}
\newcommand{\yield}{\rm{s}}
\newcommand{\abs}[1]{\lvert #1\rvert}
\newcommand{\dr}{\rm{d} r}
\newcommand{\Dr}{\Delta r}
\newcommand{\Drot}{\Delta \rot}
\newcommand{\Kr}{K_{\rm{r}}}
\newcommand{\q}{q}
\newcommand{\ubrace}[2]{\underbrace{#1}_{#2}}
\newcommand{\reac}[1]{R_{\rm #1}}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\cog}[1]{#1_{\rm{yc}}}
\newcommand{\cogi}[1]{#1_{\rm{yc i}}}
\newcommand{\tot}{\rm{tot}}
\newcommand{\parts}{\rm{parts}}
\newcommand{\nparts}{\# \parts}
\newcommand{\flange}{\text{fläns}}
\newcommand{\web}{\text{liv}}
\newcommand{\crit}{\rm{cr}}
\newcommand{\qv}{q_{\mathrm{t}}}
\newcommand{\dL}{\ \mathrm{d}L}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\dV}{\ \mathrm{d}V}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\dxi}{\ \rm{d} \xi}
\newcommand{\x}{\b{x}}
\newcommand{\K}{\b{K}}
\newcommand{\Ke}{\K^e}
\newcommand{\f}{\b{f}}
\newcommand{\fe}{\f^e}
\newcommand{\fb}{\f_{\mathrm{b}}}
\newcommand{\fl}{\f_{\mathrm{l}}}
\newcommand{\fc}{\f_{\mathrm{c}}}
\newcommand{\fbh}{\fb^{\mathrm{h}}}
\newcommand{\fbg}{\fb^{\mathrm{g}}}
\newcommand{\fbc}{\fb^{\mathrm{c}}}
\newcommand{\fbeh}{\fb^{\mathrm{h}e}}
\newcommand{\fbeg}{\fb^{\mathrm{g}e}}
\newcommand{\fbec}{\fb^{\mathrm{c}e}}
\newcommand{\Kebar}{\bar{\K}^e}
\newcommand{\N}{\b{N}}
\newcommand{\B}{\b{B}}
\newcommand{\Ne}{\b{N}^e}
\newcommand{\Be}{\b{B}^e}
\newcommand{\NeT}{ \b{N}^{e\mathrm{T}} }
\newcommand{\BeT}{ \b{B}^{e\mathrm{T}} }
\newcommand{\J}{\b{J}}
\newcommand{\bxi}{\b{\xi}}
\newcommand{\hp}{\hphantom{-}}
\newcommand{\trans}[1]{#1^\mathrm{T}}
\newcommand{\DEA}{D_{\mathrm{EA}}}
\newcommand{\DEI}{D_{\mathrm{EI}}}
\newcommand{\DGK}{D_{\mathrm{GK}}}
\newcommand{\DT}{\b{D}_{\mathrm{T}}}
\newcommand{\on}[1]{\quad \mathrm{on} \quad #1}
\renewcommand{\div}{\mathrm{div}}
\newcommand{\intL}[1]{ \int_{\L} #1 \dL }
\newcommand{\intA}[1]{ \int_{S} #1 \dA }
\newcommand{\intV}[1]{ \int_{V} #1 \dV }
\newcommand{\Ndofs}{n}
\newcommand{\nel}{n_{\mathrm{el}}}
\newcommand{\nbnd}{n_{\mathrm{bnd}}}
\newcommand{\avec}{\b{a}}
\renewcommand{\a}{\b{a}}
\newcommand{\bnabla}{\boldsymbol{\nabla}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\T}{^{\mathrm{T}}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\F}{\mathbf{F}}
\renewcommand{\r}{\mathbf{r}}
\newcommand{\M}{\mathbf{M}}
\newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}}
\newcommand{\origin}{\mathcal{O}}
\newcommand{\V}[1]{V_{\mathrm{#1}}}
\newcommand{\H}[1]{H_{\mathrm{#1}}}
\renewcommand{\deg}{^\circ}
\newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}}
\nonumber$$
Beskrivning
En konsolbalk med det tunnväggiga cirkulära tvärsnittet ifrån uppgift E3 belastas med två vridande moment \(Q_x\), en i den fria änden och en i mitten längs balken. Beräkna vridningsvinkeln i den fria änden samt den maximala skjuvspänningen som uppstår i snitt I-I och II-II.
Lösning
Lösningsgång
För att kunna räkna ut rotationen behövs kännedom om snittmomentets fördelning över balken men också för spänningsberäkningarna.
Vi börjar därför med att beräkna snittmomenten, därefter kan vi bestämma rotationen och slutligen spänningarna.
Snittmoment
Vi frilägger delen till höger om snittet eftersom man då slipper beräkna reaktionsmomentet till vänster.
\(0\le x \le L/2\)
\[M_{x1} -Q_x - Q_x= 0 \gives M_{x1} = 2Q_x\]
\(L/2\le x \le L\)
\[M_{x2} -Q_x = 0 \gives M_{x2} = Q_x\]
Rotation
Uttrycket för snittmoment ger
\[M_x = G\, K_\mathrm{v} \frac{\Delta \varphi}{L} \gives \Delta \varphi = \frac{M_x \, L}{ G\, K_\mathrm{v} }\]
vilket ger den totala rotationen som \(\Delta \varphi_1 + \Delta \varphi_2\)
\[\Delta \varphi = \frac{2\,Q_x \, L/2}{ G\, K_\mathrm{v} } + \frac{Q_x \, L/2}{ G\, K_\mathrm{v} } = \frac{3\,Q_x \, L}{ 2\, G\, K_\mathrm{v} }\]
med \(\Kv = \dfrac{\pi \, a^3\, t}{4}\) för ett tunnväggigt cirkulärt tvärsnitt fås \(\varphi = \dfrac{6\,Q_x \, L}{ \pi\, G\, a^3\,t }\)
Skjuvspänningar
\[\tau = \frac{M_x}{\Kv} r \gives\]
\[\tau_1 = \frac{M_{x1}}{\Kv} \frac{a}{2} =\ldots= \frac{4\, Q_x}{\pi\,a^2\,t}\]
\[\tau_2 = \frac{M_{x2}}{\Kv} \frac{a}{2} =\ldots= \frac{2\, Q_x}{\pi\,a^2\,t}\]
Kommentar
Ovan bestämde vi rotationen innan skjuvspänningarna, men från beräkningarna ser man att rotationen inte var nödvändig för spänningsberäkningarna, anledningen är att problemet är statiskt bestämt. Hade problemet istället varit statiskt obestämt, måste vi först bestämma rotationen innan vi kan beräkna spänningen -- därför rekommenderar jag att följa den ordningen.
Exempel på ett (snarlikt) statiskt obestämt problem är, samma konsolbalk men där högerändan är fast inspänd.