Nedböjning av en konsolbalk med stöd
$$
\newcommand{\b}[1]{\mathbf #1}
\newcommand{\eye}{\mathbf I}
\newcommand{\sig}{\sigma}
\newcommand{\S}{\b{S}}
\newcommand{\s}{\b{s}}
\newcommand{\Kv}{K_\mathrm{v}}
\newcommand{\normal}{\b{n}}
\newcommand{\medel}{\rm{mean}}
\newcommand{\gives}{\Rightarrow \qquad}
\newcommand{\qgives}{\qquad \gives}
\newcommand{\qgivess}{\, \Rightarrow \,}
\newcommand{\rot}{\varphi}
\newcommand{\sige}{\sigma_{\rm e}}
\newcommand{\eps}{\epsilon}
\newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}}
\newcommand{\equivalent}{\quad \Leftrightarrow \quad}
\newcommand{\kilo}{\ \mathrm{k}}
\newcommand{\Newton}{\ \mathrm{N}}
\newcommand{\mm}{\ \mathrm{mm}}
\newcommand{\meter}{\ \mathrm{m}}
\newcommand{\Nm}{\ \mathrm{Nm}}
\newcommand{\kNm}{\ \mathrm{kNm}}
\newcommand{\kN}{\ \mathrm{kN}}
\newcommand{\Pa}{\ \mathrm{Pa}}
\newcommand{\kPa}{\ \mathrm{kPa}}
\newcommand{\MPa}{\ \mathrm{MPa}}
\newcommand{\GPa}{\ \mathrm{GPa}}
\newcommand{\mean}[1]{\bar #1}
\newcommand{\eqright}{\longrightarrow: \qquad}
\newcommand{\eqleft}{\longleftarrow: \qquad}
\newcommand{\equp}{\uparrow: \qquad}
\newcommand{\eqdown}{\downarrow: \qquad}
\newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad}
\newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad}
\newcommand{\Dx}{\Delta x}
\newcommand{\Dy}{\Delta y}
\newcommand{\Dz}{\Delta z}
\newcommand{\dx}{\mathrm{d} x}
\newcommand{\dy}{\mathrm{d} y}
\newcommand{\dz}{\mathrm{d} z}
\newcommand{\term}{\mathrm{th}}
\newcommand{\Mv}{T}
\newcommand{\Kx}{K_{\mathrm{x}}}
\newcommand{\shear}{\gamma}
\renewcommand{\*}{\cdot}
\renewcommand{\cd}{\cdot}
\newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}}
\renewcommand{\bis}{{\prime \prime}}
\renewcommand{\tris}{{\prime \prime \prime}}
\newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}}
\newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}}
\newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}}
\newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}}
\newcommand{\DGK}{D_{\rm{GI}}}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\braces}[1]{\left\{#1\right\}}
\newcommand{\brackets}[1]{\left[#1\right]}
\newcommand{\yield}{\rm{s}}
\newcommand{\abs}[1]{\lvert #1\rvert}
\newcommand{\dr}{\rm{d} r}
\newcommand{\Dr}{\Delta r}
\newcommand{\Drot}{\Delta \rot}
\newcommand{\Kr}{K_{\rm{r}}}
\newcommand{\q}{q}
\newcommand{\ubrace}[2]{\underbrace{#1}_{#2}}
\newcommand{\reac}[1]{R_{\rm #1}}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\cog}[1]{#1_{\rm{yc}}}
\newcommand{\cogi}[1]{#1_{\rm{yc i}}}
\newcommand{\tot}{\rm{tot}}
\newcommand{\parts}{\rm{parts}}
\newcommand{\nparts}{\# \parts}
\newcommand{\flange}{\text{fläns}}
\newcommand{\web}{\text{liv}}
\newcommand{\crit}{\rm{cr}}
\newcommand{\qv}{q_{\mathrm{t}}}
\newcommand{\dL}{\ \mathrm{d}L}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\dV}{\ \mathrm{d}V}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\dxi}{\ \rm{d} \xi}
\newcommand{\x}{\b{x}}
\newcommand{\K}{\b{K}}
\newcommand{\Ke}{\K^e}
\newcommand{\f}{\b{f}}
\newcommand{\fe}{\f^e}
\newcommand{\fb}{\f_{\mathrm{b}}}
\newcommand{\fl}{\f_{\mathrm{l}}}
\newcommand{\fc}{\f_{\mathrm{c}}}
\newcommand{\fbh}{\fb^{\mathrm{h}}}
\newcommand{\fbg}{\fb^{\mathrm{g}}}
\newcommand{\fbc}{\fb^{\mathrm{c}}}
\newcommand{\fbeh}{\fb^{\mathrm{h}e}}
\newcommand{\fbeg}{\fb^{\mathrm{g}e}}
\newcommand{\fbec}{\fb^{\mathrm{c}e}}
\newcommand{\Kebar}{\bar{\K}^e}
\newcommand{\N}{\b{N}}
\newcommand{\B}{\b{B}}
\newcommand{\Ne}{\b{N}^e}
\newcommand{\Be}{\b{B}^e}
\newcommand{\NeT}{ \b{N}^{e\mathrm{T}} }
\newcommand{\BeT}{ \b{B}^{e\mathrm{T}} }
\newcommand{\J}{\b{J}}
\newcommand{\bxi}{\b{\xi}}
\newcommand{\hp}{\hphantom{-}}
\newcommand{\trans}[1]{#1^\mathrm{T}}
\newcommand{\DEA}{D_{\mathrm{EA}}}
\newcommand{\DEI}{D_{\mathrm{EI}}}
\newcommand{\DGK}{D_{\mathrm{GK}}}
\newcommand{\DT}{\b{D}_{\mathrm{T}}}
\newcommand{\on}[1]{\quad \mathrm{on} \quad #1}
\renewcommand{\div}{\mathrm{div}}
\newcommand{\intL}[1]{ \int_{\L} #1 \dL }
\newcommand{\intA}[1]{ \int_{S} #1 \dA }
\newcommand{\intV}[1]{ \int_{V} #1 \dV }
\newcommand{\Ndofs}{n}
\newcommand{\nel}{n_{\mathrm{el}}}
\newcommand{\nbnd}{n_{\mathrm{bnd}}}
\newcommand{\avec}{\b{a}}
\renewcommand{\a}{\b{a}}
\newcommand{\bnabla}{\boldsymbol{\nabla}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\T}{^{\mathrm{T}}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\F}{\mathbf{F}}
\renewcommand{\r}{\mathbf{r}}
\newcommand{\M}{\mathbf{M}}
\newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}}
\newcommand{\origin}{\mathcal{O}}
\newcommand{\V}[1]{V_{\mathrm{#1}}}
\newcommand{\H}[1]{H_{\mathrm{#1}}}
\renewcommand{\deg}{^\circ}
\newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}}
\nonumber$$
Beskrivning
En balk är belastad med en konstant utbredd last med magnitud \(q\). Tvärsnittet är kvadratiskt med sidlängd \(a\).
- Utgå från balkens differentialekvation och härled utböjningsfunktionen \(w(x)\).
- Ta fram koordinaten \(\bar{x}\) där \(T(\bar{x})=0\)

Facit
Nedböjning
\[
w(x) = \frac{qL^4}{24EI} \paren{ -\paren{\frac{x}{L}}^4 + \frac{5}{2}\paren{\frac{x}{L}}^3 - \frac{3}{2}\paren{\frac{x}{L}}^2 }
\]
- Tvärkraften är noll för
$$
x = \frac{5L}{8}
$$
Lösning
Balkens differentialekvation
Integrera balkens differentialekvation fyra gånger
$$
\begin{align}
w^{IV}(x) &= -\frac{q}{EI} \qgives \\
w^\tris(x) &= -\frac{q}{EI} \ x + C_1 \qgives \\
w^\bis(x) &= -\frac{q}{EI} \ \frac{x^2}{2} + C_1 \ x + C_2 \qgives \\
w'(x) &= -\frac{q}{EI} \ \frac{x^3}{6} + C_1 \frac{x^2}{2} + C_2 x + C_3 \qgives \\
w(x) &= -\frac{q}{EI} \ \frac{x^4}{24} + C_1 \frac{x^3}{6} + C_2 \frac{x^2}{2} + C_3 x + C_4
\end{align}
$$
Randvillkor
- \(w(0) = 0\) \(\Rightarrow\) \(C_4 = 0\)
- \(w'(0) = 0\) \(\Rightarrow\) \(C_3 = 0\)
- \(M=-EIw''(L) = 0\) \(\Rightarrow\) \(w''(L) = 0\) \(\Rightarrow\)
$$
w^\bis (L) = -\frac{q}{EI} \ \frac{L^2}{2} + C_1 \cdot L + C_2 = 0 \equivalent C_2 = \frac{q}{EI} \ \frac{L^2}{2} - C_1 \cdot L
$$
- \(w(L) = 0\) \(\Rightarrow\)
$$
w(L) = -\frac{q}{EI} \ \frac{L^4}{24} + C_1 \frac{L^3}{6} + \paren{ \frac{q}{EI} \ \frac{L^2}{2} - C_1 \cdot L } \frac{L^2}{2} = 0 \gives
$$
\[
C_1 = \frac{5qL}{8EI} \gives
\]
\[
C_2 = \frac{q}{EI} \ \frac{L^2}{2} - \frac{5qL}{8EI} \cdot L = - \frac{qL^2}{8EI}
\]
Den totala nedböjningen fås därmed som
$$
\begin{align}
w(x) &= -\frac{q}{EI} \ \frac{x^4}{24} + \frac{5qL}{8EI} \frac{x^3}{6} -\frac{qL^2}{8EI} \frac{x^2}{2} \newline &=
\frac{qL^4}{24EI} \paren{ -\paren{\frac{x}{L}}^4 + \frac{5}{2}\paren{\frac{x}{L}}^3 - \frac{3}{2}\paren{\frac{x}{L}}^2 }
\end{align}
$$
Tvärkraft
Tvärkraften fås nu som
$$
T(x) = -EI w^\tris (x) = q \ x - \frac{5qL}{8}
$$
\[
T(x) = 0 \gives q \ x - \frac{5qL}{8} = 0 \equivalent x = \frac{5L}{8}
\]