Skip to content

C22

$$ \newcommand{\b}[1]{\mathbf #1} \newcommand{\eye}{\mathbf I} \newcommand{\sig}{\sigma} \newcommand{\S}{\b{S}} \newcommand{\s}{\b{s}} \newcommand{\Kv}{K_\mathrm{v}} \newcommand{\normal}{\b{n}} \newcommand{\medel}{\rm{mean}} \newcommand{\gives}{\Rightarrow \qquad} \newcommand{\qgives}{\qquad \gives} \newcommand{\qgivess}{\, \Rightarrow \,} \newcommand{\rot}{\varphi} \newcommand{\sige}{\sigma_{\rm e}} \newcommand{\eps}{\epsilon} \newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\equivalent}{\quad \Leftrightarrow \quad} \newcommand{\kilo}{\ \mathrm{k}} \newcommand{\Newton}{\ \mathrm{N}} \newcommand{\mm}{\ \mathrm{mm}} \newcommand{\meter}{\ \mathrm{m}} \newcommand{\Nm}{\ \mathrm{Nm}} \newcommand{\kNm}{\ \mathrm{kNm}} \newcommand{\kN}{\ \mathrm{kN}} \newcommand{\Pa}{\ \mathrm{Pa}} \newcommand{\kPa}{\ \mathrm{kPa}} \newcommand{\MPa}{\ \mathrm{MPa}} \newcommand{\GPa}{\ \mathrm{GPa}} \newcommand{\mean}[1]{\bar #1} \newcommand{\eqright}{\longrightarrow: \qquad} \newcommand{\eqleft}{\longleftarrow: \qquad} \newcommand{\equp}{\uparrow: \qquad} \newcommand{\eqdown}{\downarrow: \qquad} \newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad} \newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad} \newcommand{\Dx}{\Delta x} \newcommand{\Dy}{\Delta y} \newcommand{\Dz}{\Delta z} \newcommand{\dx}{\mathrm{d} x} \newcommand{\dy}{\mathrm{d} y} \newcommand{\dz}{\mathrm{d} z} \newcommand{\term}{\mathrm{th}} \newcommand{\Mv}{T} \newcommand{\Kx}{K_{\mathrm{x}}} \newcommand{\shear}{\gamma} \renewcommand{\*}{\cdot} \renewcommand{\cd}{\cdot} \newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}} \renewcommand{\bis}{{\prime \prime}} \renewcommand{\tris}{{\prime \prime \prime}} \newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}} \newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}} \newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}} \newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}} \newcommand{\DGK}{D_{\rm{GI}}} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\braces}[1]{\left\{#1\right\}} \newcommand{\brackets}[1]{\left[#1\right]} \newcommand{\yield}{\rm{s}} \newcommand{\abs}[1]{\lvert #1\rvert} \newcommand{\dr}{\rm{d} r} \newcommand{\Dr}{\Delta r} \newcommand{\Drot}{\Delta \rot} \newcommand{\Kr}{K_{\rm{r}}} \newcommand{\q}{q} \newcommand{\ubrace}[2]{\underbrace{#1}_{#2}} \newcommand{\reac}[1]{R_{\rm #1}} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\cog}[1]{#1_{\rm{yc}}} \newcommand{\cogi}[1]{#1_{\rm{yc i}}} \newcommand{\tot}{\rm{tot}} \newcommand{\parts}{\rm{parts}} \newcommand{\nparts}{\# \parts} \newcommand{\flange}{\text{fläns}} \newcommand{\web}{\text{liv}} \newcommand{\crit}{\rm{cr}} \newcommand{\qv}{q_{\mathrm{t}}} \newcommand{\dL}{\ \mathrm{d}L} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\dV}{\ \mathrm{d}V} \renewcommand{\L}{\mathcal{L}} \newcommand{\dxi}{\ \rm{d} \xi} \newcommand{\x}{\b{x}} \newcommand{\K}{\b{K}} \newcommand{\Ke}{\K^e} \newcommand{\f}{\b{f}} \newcommand{\fe}{\f^e} \newcommand{\fb}{\f_{\mathrm{b}}} \newcommand{\fl}{\f_{\mathrm{l}}} \newcommand{\fc}{\f_{\mathrm{c}}} \newcommand{\fbh}{\fb^{\mathrm{h}}} \newcommand{\fbg}{\fb^{\mathrm{g}}} \newcommand{\fbc}{\fb^{\mathrm{c}}} \newcommand{\fbeh}{\fb^{\mathrm{h}e}} \newcommand{\fbeg}{\fb^{\mathrm{g}e}} \newcommand{\fbec}{\fb^{\mathrm{c}e}} \newcommand{\Kebar}{\bar{\K}^e} \newcommand{\N}{\b{N}} \newcommand{\B}{\b{B}} \newcommand{\Ne}{\b{N}^e} \newcommand{\Be}{\b{B}^e} \newcommand{\NeT}{ \b{N}^{e\mathrm{T}} } \newcommand{\BeT}{ \b{B}^{e\mathrm{T}} } \newcommand{\J}{\b{J}} \newcommand{\bxi}{\b{\xi}} \newcommand{\hp}{\hphantom{-}} \newcommand{\trans}[1]{#1^\mathrm{T}} \newcommand{\DEA}{D_{\mathrm{EA}}} \newcommand{\DEI}{D_{\mathrm{EI}}} \newcommand{\DGK}{D_{\mathrm{GK}}} \newcommand{\DT}{\b{D}_{\mathrm{T}}} \newcommand{\on}[1]{\quad \mathrm{on} \quad #1} \renewcommand{\div}{\mathrm{div}} \newcommand{\intL}[1]{ \int_{\L} #1 \dL } \newcommand{\intA}[1]{ \int_{S} #1 \dA } \newcommand{\intV}[1]{ \int_{V} #1 \dV } \newcommand{\Ndofs}{n} \newcommand{\nel}{n_{\mathrm{el}}} \newcommand{\nbnd}{n_{\mathrm{bnd}}} \newcommand{\avec}{\b{a}} \renewcommand{\a}{\b{a}} \newcommand{\bnabla}{\boldsymbol{\nabla}} \newcommand{\grad}{\boldsymbol{\nabla}} \newcommand{\T}{^{\mathrm{T}}} \newcommand{\rd}{\mathrm{d}} \newcommand{\F}{\mathbf{F}} \renewcommand{\r}{\mathbf{r}} \newcommand{\M}{\mathbf{M}} \newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}} \newcommand{\origin}{\mathcal{O}} \newcommand{\V}[1]{V_{\mathrm{#1}}} \newcommand{\H}[1]{H_{\mathrm{#1}}} \renewcommand{\deg}{^\circ} \newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}} \nonumber$$

Lösning

Lösningsgång

För att bestämma maximal drag- och tryckspänning använder vi oss av Naviers formel \(\sigma = \frac{M_y}{I_y}z\). För att beräkna spänningen behöver vi bestämma det maximala böjmomentet samt yttröghetsmomenten, för liggande och stående planka.

Maximalt böjmoment

Detta uppstår vid det högra stödet. Hur inser man det?

  • Till att börja med måste momentet vara noll vid vänstra stödet samt i den fria änden.
  • Eftersom balken belastas av enbart en punktlast kommer momentet variera styckvis linjärt över balken.
  • Momentet måste då bli som störst vid det högra stödet och sedan variera ner till noll på vardera sida om stödet. Max moment blir då \(M_y = P\,L\)

Tips

Om du är osäker på det här resonemanget kring det maximala momentet går det naturligtvis lika bra att använda snittmetoden. Bestäm reaktionkrafter och inför sedan två snitt -- till vänster och höger om högra stödet -- och ställ upp momentjämvikt. Utifrån dessa två uttryck, bestäm maximalt böjmoment.

Yttröghetsmoment

\[I_{\mathrm{liggande}} = \frac{120 \cdot 10^{-3} \cdot (30 \cdot 10^{-3})^3 }{12} = 2.7 \cdot 10^{-7}\meter^4\]
\[I_{\mathrm{stående}} = \frac{30 \cdot 10^{-3} \cdot (120 \cdot 10^{-3})^3 }{12} = 4.32 \cdot 10^{-6}\meter^4\]

Spänningar

Eftersom tvärsnittet är symmetrisk blir maximal drag- och tryckspänning till beloppet lika stora.

Liggande

\[\sigma = \pm \frac{M_y}{I_{\mathrm{liggande}}}z_\max = \ldots = \pm 55.6 \MPa\]

Stående

\[\sigma = \pm \frac{M_y}{I_{\mathrm{stående}}}z_\max = \ldots = \pm 13.9 \MPa\]

Kommentarer

Böjspänningarna minskar alltså då balken står på högkant, detta är förväntat eftersom yttröghetsmomentet är högre och står i nämnaren i Naviers formel.

Eftersom maximalt moment är positivt, fås maximal dragspänning på ovansidan av balken och maximal tryckspänning på undersidan av balken. Hade punktlasten istället varit riktad uppåt hade momentet blivit negativt och undersidan dragen.

Back to top