Skip to content

C14

$$ \newcommand{\b}[1]{\mathbf #1} \newcommand{\eye}{\mathbf I} \newcommand{\sig}{\sigma} \newcommand{\S}{\b{S}} \newcommand{\s}{\b{s}} \newcommand{\Kv}{K_\mathrm{v}} \newcommand{\normal}{\b{n}} \newcommand{\medel}{\rm{mean}} \newcommand{\gives}{\Rightarrow \qquad} \newcommand{\qgives}{\qquad \gives} \newcommand{\qgivess}{\, \Rightarrow \,} \newcommand{\rot}{\varphi} \newcommand{\sige}{\sigma_{\rm e}} \newcommand{\eps}{\epsilon} \newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\equivalent}{\quad \Leftrightarrow \quad} \newcommand{\kilo}{\ \mathrm{k}} \newcommand{\Newton}{\ \mathrm{N}} \newcommand{\mm}{\ \mathrm{mm}} \newcommand{\meter}{\ \mathrm{m}} \newcommand{\Nm}{\ \mathrm{Nm}} \newcommand{\kNm}{\ \mathrm{kNm}} \newcommand{\kN}{\ \mathrm{kN}} \newcommand{\Pa}{\ \mathrm{Pa}} \newcommand{\kPa}{\ \mathrm{kPa}} \newcommand{\MPa}{\ \mathrm{MPa}} \newcommand{\GPa}{\ \mathrm{GPa}} \newcommand{\mean}[1]{\bar #1} \newcommand{\eqright}{\longrightarrow: \qquad} \newcommand{\eqleft}{\longleftarrow: \qquad} \newcommand{\equp}{\uparrow: \qquad} \newcommand{\eqdown}{\downarrow: \qquad} \newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad} \newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad} \newcommand{\Dx}{\Delta x} \newcommand{\Dy}{\Delta y} \newcommand{\Dz}{\Delta z} \newcommand{\dx}{\mathrm{d} x} \newcommand{\dy}{\mathrm{d} y} \newcommand{\dz}{\mathrm{d} z} \newcommand{\term}{\mathrm{th}} \newcommand{\Mv}{T} \newcommand{\Kx}{K_{\mathrm{x}}} \newcommand{\shear}{\gamma} \renewcommand{\*}{\cdot} \renewcommand{\cd}{\cdot} \newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}} \renewcommand{\bis}{{\prime \prime}} \renewcommand{\tris}{{\prime \prime \prime}} \newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}} \newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}} \newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}} \newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}} \newcommand{\DGK}{D_{\rm{GI}}} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\braces}[1]{\left\{#1\right\}} \newcommand{\brackets}[1]{\left[#1\right]} \newcommand{\yield}{\rm{s}} \newcommand{\abs}[1]{\lvert #1\rvert} \newcommand{\dr}{\rm{d} r} \newcommand{\Dr}{\Delta r} \newcommand{\Drot}{\Delta \rot} \newcommand{\Kr}{K_{\rm{r}}} \newcommand{\q}{q} \newcommand{\ubrace}[2]{\underbrace{#1}_{#2}} \newcommand{\reac}[1]{R_{\rm #1}} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\cog}[1]{#1_{\rm{yc}}} \newcommand{\cogi}[1]{#1_{\rm{yc i}}} \newcommand{\tot}{\rm{tot}} \newcommand{\parts}{\rm{parts}} \newcommand{\nparts}{\# \parts} \newcommand{\flange}{\text{fläns}} \newcommand{\web}{\text{liv}} \newcommand{\crit}{\rm{cr}} \newcommand{\qv}{q_{\mathrm{t}}} \newcommand{\dL}{\ \mathrm{d}L} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\dV}{\ \mathrm{d}V} \renewcommand{\L}{\mathcal{L}} \newcommand{\dxi}{\ \rm{d} \xi} \newcommand{\x}{\b{x}} \newcommand{\K}{\b{K}} \newcommand{\Ke}{\K^e} \newcommand{\f}{\b{f}} \newcommand{\fe}{\f^e} \newcommand{\fb}{\f_{\mathrm{b}}} \newcommand{\fl}{\f_{\mathrm{l}}} \newcommand{\fc}{\f_{\mathrm{c}}} \newcommand{\fbh}{\fb^{\mathrm{h}}} \newcommand{\fbg}{\fb^{\mathrm{g}}} \newcommand{\fbc}{\fb^{\mathrm{c}}} \newcommand{\fbeh}{\fb^{\mathrm{h}e}} \newcommand{\fbeg}{\fb^{\mathrm{g}e}} \newcommand{\fbec}{\fb^{\mathrm{c}e}} \newcommand{\Kebar}{\bar{\K}^e} \newcommand{\N}{\b{N}} \newcommand{\B}{\b{B}} \newcommand{\Ne}{\b{N}^e} \newcommand{\Be}{\b{B}^e} \newcommand{\NeT}{ \b{N}^{e\mathrm{T}} } \newcommand{\BeT}{ \b{B}^{e\mathrm{T}} } \newcommand{\J}{\b{J}} \newcommand{\bxi}{\b{\xi}} \newcommand{\hp}{\hphantom{-}} \newcommand{\trans}[1]{#1^\mathrm{T}} \newcommand{\DEA}{D_{\mathrm{EA}}} \newcommand{\DEI}{D_{\mathrm{EI}}} \newcommand{\DGK}{D_{\mathrm{GK}}} \newcommand{\DT}{\b{D}_{\mathrm{T}}} \newcommand{\on}[1]{\quad \mathrm{on} \quad #1} \renewcommand{\div}{\mathrm{div}} \newcommand{\intL}[1]{ \int_{\L} #1 \dL } \newcommand{\intA}[1]{ \int_{S} #1 \dA } \newcommand{\intV}[1]{ \int_{V} #1 \dV } \newcommand{\Ndofs}{n} \newcommand{\nel}{n_{\mathrm{el}}} \newcommand{\nbnd}{n_{\mathrm{bnd}}} \newcommand{\avec}{\b{a}} \renewcommand{\a}{\b{a}} \newcommand{\bnabla}{\boldsymbol{\nabla}} \newcommand{\grad}{\boldsymbol{\nabla}} \newcommand{\T}{^{\mathrm{T}}} \newcommand{\rd}{\mathrm{d}} \newcommand{\F}{\mathbf{F}} \renewcommand{\r}{\mathbf{r}} \newcommand{\M}{\mathbf{M}} \newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}} \newcommand{\origin}{\mathcal{O}} \newcommand{\V}[1]{V_{\mathrm{#1}}} \newcommand{\H}[1]{H_{\mathrm{#1}}} \renewcommand{\deg}{^\circ} \newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}} \nonumber$$

Lösning

Det statiskt ytmomentet \(S_y\) definieras som \(S_y = \int_A z\, \mathrm{d}A\) vilket för sammansatta delar med kända tyngdpunkter kan skrivas som \(S_y = \sum_i a_{zi}\, A_i\). I det här fallet handlar det endast om en del, eftersom arean ovanför snittet är en rektangel, och vi får \(S_y = a_z \, A\)

\(a_z\) är avståndet från tvärstnittets ytcentrum till den "avskjuvade" delens ytcentrum.

a)

\[S_y  = \underbrace{\paren{-2b + \frac{3b}{2} }}_{a_z} \underbrace{\paren{3b\cdot b}}_A = - \frac{3b^3}{2}\]

b)

\[S_y  = \paren{2b - \frac{b}{2} } \paren{b\cdot b} = \frac{3b^3}{2}\]

c)

\[S_y  = \paren{\frac{2b}{2} } \paren{2\cdot b} = 2b^3\]

d)

\[S_y  = \paren{-\frac{2b}{2} } \paren{2\cdot b} = -2b^3\]

Kommentarer

Ibland skippar man att ta med hävarmens tecken när man räknar ut det statiska ytmomentet (alla svaren ovan blir då positiva). Anledningen är att det underlättar när man ska beräkna skjuvspänningar, eftersom man slipper att tänka på om det ska vara \(+S_y\) eller \(-S_y\) i formeln för böjskjuvspänningar \(\dfrac{S_y\, T}{I_y\, b}\). Det man tappar med den här "genvägen" är vilken riktning (d.v.s. tecken) skjuvspänningen får, men i praktiken spelar detta oftast ingen roll.

Back to top