A9
$$
\newcommand{\b}[1]{\mathbf #1}
\newcommand{\eye}{\mathbf I}
\newcommand{\sig}{\sigma}
\newcommand{\S}{\b{S}}
\newcommand{\s}{\b{s}}
\newcommand{\Kv}{K_\mathrm{v}}
\newcommand{\normal}{\b{n}}
\newcommand{\medel}{\rm{mean}}
\newcommand{\gives}{\Rightarrow \qquad}
\newcommand{\qgives}{\qquad \gives}
\newcommand{\qgivess}{\, \Rightarrow \,}
\newcommand{\rot}{\varphi}
\newcommand{\sige}{\sigma_{\rm e}}
\newcommand{\eps}{\epsilon}
\newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}}
\newcommand{\equivalent}{\quad \Leftrightarrow \quad}
\newcommand{\kilo}{\ \mathrm{k}}
\newcommand{\Newton}{\ \mathrm{N}}
\newcommand{\mm}{\ \mathrm{mm}}
\newcommand{\meter}{\ \mathrm{m}}
\newcommand{\Nm}{\ \mathrm{Nm}}
\newcommand{\kNm}{\ \mathrm{kNm}}
\newcommand{\kN}{\ \mathrm{kN}}
\newcommand{\Pa}{\ \mathrm{Pa}}
\newcommand{\kPa}{\ \mathrm{kPa}}
\newcommand{\MPa}{\ \mathrm{MPa}}
\newcommand{\GPa}{\ \mathrm{GPa}}
\newcommand{\mean}[1]{\bar #1}
\newcommand{\eqright}{\longrightarrow: \qquad}
\newcommand{\eqleft}{\longleftarrow: \qquad}
\newcommand{\equp}{\uparrow: \qquad}
\newcommand{\eqdown}{\downarrow: \qquad}
\newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad}
\newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad}
\newcommand{\Dx}{\Delta x}
\newcommand{\Dy}{\Delta y}
\newcommand{\Dz}{\Delta z}
\newcommand{\dx}{\mathrm{d} x}
\newcommand{\dy}{\mathrm{d} y}
\newcommand{\dz}{\mathrm{d} z}
\newcommand{\term}{\mathrm{th}}
\newcommand{\Mv}{T}
\newcommand{\Kx}{K_{\mathrm{x}}}
\newcommand{\shear}{\gamma}
\renewcommand{\*}{\cdot}
\renewcommand{\cd}{\cdot}
\newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}}
\renewcommand{\bis}{{\prime \prime}}
\renewcommand{\tris}{{\prime \prime \prime}}
\newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}}
\newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}}
\newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}}
\newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}}
\newcommand{\DGK}{D_{\rm{GI}}}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\braces}[1]{\left\{#1\right\}}
\newcommand{\brackets}[1]{\left[#1\right]}
\newcommand{\yield}{\rm{s}}
\newcommand{\abs}[1]{\lvert #1\rvert}
\newcommand{\dr}{\rm{d} r}
\newcommand{\Dr}{\Delta r}
\newcommand{\Drot}{\Delta \rot}
\newcommand{\Kr}{K_{\rm{r}}}
\newcommand{\q}{q}
\newcommand{\ubrace}[2]{\underbrace{#1}_{#2}}
\newcommand{\reac}[1]{R_{\rm #1}}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\cog}[1]{#1_{\rm{yc}}}
\newcommand{\cogi}[1]{#1_{\rm{yc i}}}
\newcommand{\tot}{\rm{tot}}
\newcommand{\parts}{\rm{parts}}
\newcommand{\nparts}{\# \parts}
\newcommand{\flange}{\text{fläns}}
\newcommand{\web}{\text{liv}}
\newcommand{\crit}{\rm{cr}}
\newcommand{\qv}{q_{\mathrm{t}}}
\newcommand{\dL}{\ \mathrm{d}L}
\newcommand{\dA}{\ \mathrm{d}A}
\newcommand{\dV}{\ \mathrm{d}V}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\dxi}{\ \rm{d} \xi}
\newcommand{\x}{\b{x}}
\newcommand{\K}{\b{K}}
\newcommand{\Ke}{\K^e}
\newcommand{\f}{\b{f}}
\newcommand{\fe}{\f^e}
\newcommand{\fb}{\f_{\mathrm{b}}}
\newcommand{\fl}{\f_{\mathrm{l}}}
\newcommand{\fc}{\f_{\mathrm{c}}}
\newcommand{\fbh}{\fb^{\mathrm{h}}}
\newcommand{\fbg}{\fb^{\mathrm{g}}}
\newcommand{\fbc}{\fb^{\mathrm{c}}}
\newcommand{\fbeh}{\fb^{\mathrm{h}e}}
\newcommand{\fbeg}{\fb^{\mathrm{g}e}}
\newcommand{\fbec}{\fb^{\mathrm{c}e}}
\newcommand{\Kebar}{\bar{\K}^e}
\newcommand{\N}{\b{N}}
\newcommand{\B}{\b{B}}
\newcommand{\Ne}{\b{N}^e}
\newcommand{\Be}{\b{B}^e}
\newcommand{\NeT}{ \b{N}^{e\mathrm{T}} }
\newcommand{\BeT}{ \b{B}^{e\mathrm{T}} }
\newcommand{\J}{\b{J}}
\newcommand{\bxi}{\b{\xi}}
\newcommand{\hp}{\hphantom{-}}
\newcommand{\trans}[1]{#1^\mathrm{T}}
\newcommand{\DEA}{D_{\mathrm{EA}}}
\newcommand{\DEI}{D_{\mathrm{EI}}}
\newcommand{\DGK}{D_{\mathrm{GK}}}
\newcommand{\DT}{\b{D}_{\mathrm{T}}}
\newcommand{\on}[1]{\quad \mathrm{on} \quad #1}
\renewcommand{\div}{\mathrm{div}}
\newcommand{\intL}[1]{ \int_{\L} #1 \dL }
\newcommand{\intA}[1]{ \int_{S} #1 \dA }
\newcommand{\intV}[1]{ \int_{V} #1 \dV }
\newcommand{\Ndofs}{n}
\newcommand{\nel}{n_{\mathrm{el}}}
\newcommand{\nbnd}{n_{\mathrm{bnd}}}
\newcommand{\avec}{\b{a}}
\renewcommand{\a}{\b{a}}
\newcommand{\bnabla}{\boldsymbol{\nabla}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\T}{^{\mathrm{T}}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\F}{\mathbf{F}}
\renewcommand{\r}{\mathbf{r}}
\newcommand{\M}{\mathbf{M}}
\newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}}
\newcommand{\origin}{\mathcal{O}}
\newcommand{\V}[1]{V_{\mathrm{#1}}}
\newcommand{\H}[1]{H_{\mathrm{#1}}}
\renewcommand{\deg}{^\circ}
\newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}}
\nonumber$$
Beskrivning
En platt stång med tjockleken \(t\) belastas av en punktlast vid B enligt figuren.
Beräkna förskjutningen i den fria änden, d.v.s. i punkten C.
Given data:
\(F=40 \kN\)
\(E=200 \GPa\)
\(t=25 \ \rm{mm}\)
Facit
Förskjutningen i punkten C är \(u_{\rm{C}} = 0.097\) mm.
Lösning
Förskjutningen i punkten C, \(u_{\rm{C}}=u(x=2L)\) , kan beräknas utifrån det kinematiska sambandet mellan töjning och förskjutning (normaltöjningens definition):
\[
\epsilon = \od{u}{x} \qgives u_{\rm{C}} = \int_{0}^{2L} \epsilon(x) \dx
\]
För att beräkna förskjutningen behöver vi därför ta fram ett uttryck för hur töjningen varierar längs med stången.
Töjning
Hookes lag ger:
$$
\sigma(x) = E \ \epsilon(x) \qgives \epsilon(x) =\frac{\sigma(x)}{E} =\frac{N(x)}{EA(x)}
$$
Normalkrafter
Del AB
\[
\eqleft N_{\rm{AB}} - F = 0 \qgives N_{\rm{AB}} = F
\]
Del BC
\[
\eqleft N_{\rm{BC}} = 0
\]
Eftersom normalkraften är noll i delen BC blir också töjningen noll (\(\epsilon_{\rm{BC}}=0\) ), vilket med andra ord innebär att delen BC inte deformeras.
Arean
Vi har en linjär variation av tvärsnittsarean från \(0.15t\) i A till \(0.05t\) i C. Detta kan tecknas som
\[
A(x) = 0.15t - 0.10t \frac{x}{2L} = t(0.15 - 0.10 \frac{x}{2L})
\]
Kommentar
Det finns många sätt att komma fram till det här uttrycket, exempelvis kan räta linjens ekvation användas: Ta fram lutningen \(k\) på räta linjens ekvation \((A=kx+m)\) som \(\frac{0.05t-0.15t}{2L-0}\) och punkten \(m\) kan förslagsvis bestämmas genom villkoret \(A(0)=0.15t = k\cdot 0 + m \Rightarrow m=0.15t\)
Töjningen för delen AB kan nu skrivas som \(\epsilon_{\rm{AB}}(x) = \frac{F}{Et(0.15 - 0.10 \frac{x}{2L})}\)
Förskjutning
Slutligen kan vi beräkna förskjutningen genom att utföra integralen över töjningen
\[
\begin{align}
u_{\rm{C}}
&= \int_{0}^{2L} \epsilon(x) \dx = \int_{0}^{L} \frac{F}{Et(0.15 - 0.10 \frac{x}{2L})} \dx \newline
&= \frac{F}{Et} \int_{0}^{L} \frac{1}{(0.15 - 0.10 \frac{x}{2L})} \dx =
\frac{F}{Et} \left. \frac{\ln(0.15 - 0.10 \frac{x}{2L}) }{-\frac{0.10}{2L}} \right|_0^L \newline
& = \ldots \approx 0.097 \ \rm{mm}
\end{align}
\]