Skip to content

Vridning av tunnväggigt cirkulärt rör

$$ \newcommand{\b}[1]{\mathbf #1} \newcommand{\eye}{\mathbf I} \newcommand{\sig}{\sigma} \newcommand{\S}{\b{S}} \newcommand{\s}{\b{s}} \newcommand{\Kv}{K_\mathrm{v}} \newcommand{\normal}{\b{n}} \newcommand{\medel}{\rm{mean}} \newcommand{\gives}{\Rightarrow \qquad} \newcommand{\qgives}{\qquad \gives} \newcommand{\qgivess}{\, \Rightarrow \,} \newcommand{\rot}{\varphi} \newcommand{\sige}{\sigma_{\rm e}} \newcommand{\eps}{\epsilon} \newcommand{\od}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\equivalent}{\quad \Leftrightarrow \quad} \newcommand{\kilo}{\ \mathrm{k}} \newcommand{\Newton}{\ \mathrm{N}} \newcommand{\mm}{\ \mathrm{mm}} \newcommand{\meter}{\ \mathrm{m}} \newcommand{\Nm}{\ \mathrm{Nm}} \newcommand{\kNm}{\ \mathrm{kNm}} \newcommand{\kN}{\ \mathrm{kN}} \newcommand{\Pa}{\ \mathrm{Pa}} \newcommand{\kPa}{\ \mathrm{kPa}} \newcommand{\MPa}{\ \mathrm{MPa}} \newcommand{\GPa}{\ \mathrm{GPa}} \newcommand{\mean}[1]{\bar #1} \newcommand{\eqright}{\longrightarrow: \qquad} \newcommand{\eqleft}{\longleftarrow: \qquad} \newcommand{\equp}{\uparrow: \qquad} \newcommand{\eqdown}{\downarrow: \qquad} \newcommand{\eqcwmom}[1]{\stackrel{\curvearrowright}{#1}: \qquad} \newcommand{\eqccwmom}[1]{\stackrel{ \curvearrowleft }{ #1 }: \qquad} \newcommand{\Dx}{\Delta x} \newcommand{\Dy}{\Delta y} \newcommand{\Dz}{\Delta z} \newcommand{\dx}{\mathrm{d} x} \newcommand{\dy}{\mathrm{d} y} \newcommand{\dz}{\mathrm{d} z} \newcommand{\term}{\mathrm{th}} \newcommand{\Mv}{T} \newcommand{\Kx}{K_{\mathrm{x}}} \newcommand{\shear}{\gamma} \renewcommand{\*}{\cdot} \renewcommand{\cd}{\cdot} \newcommand{\R}[2][]{R_{\rm{#2}}^{\rm{#1}}} \renewcommand{\bis}{{\prime \prime}} \renewcommand{\tris}{{\prime \prime \prime}} \newcommand{\dd}[2]{\frac{\Delta #1}{\Delta #2}} \newcommand{\pd}[2]{\frac{\partial\: #1}{\partial\: #2}} \newcommand{\od}[2]{\frac{\mathrm{d}\: #1}{\mathrm{d} #2}} \newcommand{\odd}[2]{\dfrac{\mathrm{d}^2 #1}{\mathrm{d} #2^2}} \newcommand{\DGK}{D_{\rm{GI}}} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\braces}[1]{\left\{#1\right\}} \newcommand{\brackets}[1]{\left[#1\right]} \newcommand{\yield}{\rm{s}} \newcommand{\abs}[1]{\lvert #1\rvert} \newcommand{\dr}{\rm{d} r} \newcommand{\Dr}{\Delta r} \newcommand{\Drot}{\Delta \rot} \newcommand{\Kr}{K_{\rm{r}}} \newcommand{\q}{q} \newcommand{\ubrace}[2]{\underbrace{#1}_{#2}} \newcommand{\reac}[1]{R_{\rm #1}} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\cog}[1]{#1_{\rm{yc}}} \newcommand{\cogi}[1]{#1_{\rm{yc i}}} \newcommand{\tot}{\rm{tot}} \newcommand{\parts}{\rm{parts}} \newcommand{\nparts}{\# \parts} \newcommand{\flange}{\text{fläns}} \newcommand{\web}{\text{liv}} \newcommand{\crit}{\rm{cr}} \newcommand{\qv}{q_{\mathrm{t}}} \newcommand{\dL}{\ \mathrm{d}L} \newcommand{\dA}{\ \mathrm{d}A} \newcommand{\dV}{\ \mathrm{d}V} \renewcommand{\L}{\mathcal{L}} \newcommand{\dxi}{\ \rm{d} \xi} \newcommand{\x}{\b{x}} \newcommand{\K}{\b{K}} \newcommand{\Ke}{\K^e} \newcommand{\f}{\b{f}} \newcommand{\fe}{\f^e} \newcommand{\fb}{\f_{\mathrm{b}}} \newcommand{\fl}{\f_{\mathrm{l}}} \newcommand{\fc}{\f_{\mathrm{c}}} \newcommand{\fbh}{\fb^{\mathrm{h}}} \newcommand{\fbg}{\fb^{\mathrm{g}}} \newcommand{\fbc}{\fb^{\mathrm{c}}} \newcommand{\fbeh}{\fb^{\mathrm{h}e}} \newcommand{\fbeg}{\fb^{\mathrm{g}e}} \newcommand{\fbec}{\fb^{\mathrm{c}e}} \newcommand{\Kebar}{\bar{\K}^e} \newcommand{\N}{\b{N}} \newcommand{\B}{\b{B}} \newcommand{\Ne}{\b{N}^e} \newcommand{\Be}{\b{B}^e} \newcommand{\NeT}{ \b{N}^{e\mathrm{T}} } \newcommand{\BeT}{ \b{B}^{e\mathrm{T}} } \newcommand{\J}{\b{J}} \newcommand{\bxi}{\b{\xi}} \newcommand{\hp}{\hphantom{-}} \newcommand{\trans}[1]{#1^\mathrm{T}} \newcommand{\DEA}{D_{\mathrm{EA}}} \newcommand{\DEI}{D_{\mathrm{EI}}} \newcommand{\DGK}{D_{\mathrm{GK}}} \newcommand{\DT}{\b{D}_{\mathrm{T}}} \newcommand{\on}[1]{\quad \mathrm{on} \quad #1} \renewcommand{\div}{\mathrm{div}} \newcommand{\intL}[1]{ \int_{\L} #1 \dL } \newcommand{\intA}[1]{ \int_{S} #1 \dA } \newcommand{\intV}[1]{ \int_{V} #1 \dV } \newcommand{\Ndofs}{n} \newcommand{\nel}{n_{\mathrm{el}}} \newcommand{\nbnd}{n_{\mathrm{bnd}}} \newcommand{\avec}{\b{a}} \renewcommand{\a}{\b{a}} \newcommand{\bnabla}{\boldsymbol{\nabla}} \newcommand{\grad}{\boldsymbol{\nabla}} \newcommand{\T}{^{\mathrm{T}}} \newcommand{\rd}{\mathrm{d}} \newcommand{\F}{\mathbf{F}} \renewcommand{\r}{\mathbf{r}} \newcommand{\M}{\mathbf{M}} \newcommand{\vecright}[1]{\overrightarrow{\mathrm{#1}}} \newcommand{\origin}{\mathcal{O}} \newcommand{\V}[1]{V_{\mathrm{#1}}} \newcommand{\H}[1]{H_{\mathrm{#1}}} \renewcommand{\deg}{^\circ} \newcommand{\basevec}[1]{\mathbf{e}_{\mathrm{#1}}} \nonumber$$

Skjuvspänning -- jämvikt

Antag att en tunnväggig cirkulär axel utsätts för ett kraftpar, dvs ett yttre vridmoment \(M= P \cdot 2\,s\), enligt figuren nedan.

Om vi snittar och frilägger en del av axeln, får man från momentjämvikt att ett snittmoment \(M_{\rm v}\) måste balansera det yttre momentet \(M\) dvs.

\[\twoheadrightarrow: \quad M-M_{\rm v}=0\]

Snittmomentet \(M_{\rm v}\) är resultant till den inre skjuvspänningen \(\tau\) enligt figuren nedan.

\[M_{\rm v}=\int_A \tau \, r \, {\rm d} A = \tau \, \bar{r} \, \underbrace{2 \pi \, \bar{r} \, h }_{A}\]

där vi antagit att skjuvspänningen kan antas vara konstant över tjockleken. Detta antagande kan vi göra eftersom tvärsnittet är tunnväggigt. Skjuvspänningen som uppstår vid vridning av ett tunnväggigt cirkulärt tvärsnitt blir därför

\[\tau=\frac{M_{\rm v}}{2 \pi \, \bar{r}^2 \, h}\]

Skjuvtöjning -- kinematik

När ett vridande moment \(\Mv\) läggs på en axel, ger det upphov till en vinkeländring \(\rot\) av axeln (jfr stången där \(u\) är förskjutningen av en viss punkt).

Antag att varje tvärsnitt endast roterar och att tvärsnittet förblir plant. Från figuren ställer vi upp följande deformationssamband mellan skjuvvinkel \(\gamma\) och vridvinkel \(\varphi\):

\[\shear L = (\rot(L)-\rot(0)) r \gives\]
\[\shear = r \frac{\rot(L)-\rot(0)}{L}= r \frac{\Delta \rot}{L}\]

där vi har antagit små vinklar så att förskjutningen fås som båglängden (vinkel gånger radie).

Materialmodell -- Hookes lag

Sambandet mellan skjuvspänning \(\tau\) och skjuvning \(\gamma\) fås från Hookes lag:

\[\tau = G \, \gamma\]

där \(G\) är skjuvmodulen [N/m\({}^2\)].

Back to top